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On the Number of Infinite Geodesics and 
Ground States in Disordered Systems 
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We study first-passage percolation models and their higher dimensional 
analogs--models of surfaces with random weights. We prove that under very 
general conditions the number of lines or, in the second case, hypersurfaces 
which locally minimize the sum of the random weights is with probability one 
equal to 0 or with probability one equal to + o~. As corollaries we show that 
in any dimension d~>2 the number of ground states of an Ising ferromagnet 
with random coupling constants equals (with probability one) 2 or + c9. Proofs 
employ simple large-deviation estimates and ergodic arguments. 
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1. INFINITE GEODESICS IN FIRST PASSAGE PERCOLATION 

Let Z d denote the hypercubic integer lattice in d dimensions. In the first 
passage percolation model 12"5' to~ to each bond of the lattice (i.e., a segment 
connecting a pair of nearest neighbor sites x and y) there is associated a 
nonnegative random variable t,.y, interpreted as the passage time from x 
to y. We assume throughout the paper that passage times corresponding to 
different bonds are independent random variables on some probability 
space (/2, ~ ,  P) with the same continuous distribution. Given a finite 
nearest neighbor path y from x to y, 

y = ( X = y o ,  Yl ..... Y k = Y )  (1) 

where Yo, Y, ,..., Y, ~ Zd,  we define the passage time 

k 
Y. (2) 

j = l  
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Proposition 1. Under the above assumptions, with probability 
one every two nearest neighbor paths connecting the same pair of points 
have different passage times. 

Proof. This follows easily from continuity of the distribution of 
passage times. 

For an arbitrary (not necessarily nearest neighbor) pair (x, y) of sites 
we define 

r.,...,.=inf{t(~,)[~, is a path from x to y} (3) 

It can be shown ~51 that the infimum is actually realized and it follows from 
Proposition 1 that there is an event f2* ~ f f  with P[ f2*]  = 1 such that for 
co ~ Q* the path which realizes the infimum is unique for any pair (x, y). 

D e f i n i t i o n  1. For  0 ~ / 2  the unique path which realizes the 
infimum in (3) is denoted by ~,,. ,. and called the geodesic connecting x to y. 

The geodesics defined above will sometimes be called finite, to dis- 
tinguish them from infinite geodesics, which we now introduce and which 
are the main topic of this section. 

D e f i n i t i o n  2. Let 2 be a doubly infinite nearest neighbor path in 
Z +/, i.e., 2 =  {2 , , In ,Z}  with 12,,+~-,t,,[ =1 for every n. For  an co ~ff2* we 
call 2 an infinite geodesic if for any k, n eZ ,  k < n ,  the finite path 
{2,,,[k<<,m <<.n} is the finite geodesic connecting 2 k to 2,,. 

Infinite geodesics are thus doubly infinite paths which locally minimize 
the passage time. In ref. 8 they are called bigeodesics, to distinguish them 
from lines which are infinite only in one direction, i.e., 2 = {2,,In e Z+ }, 
and which are called unigeodesics. We do not consider unigeodesics in this 
paper. 

We denote the number of infinite geodesics by N(co)~{0, 1,...} w 
{ + ov }. The following simple fact is well known. 

Proposition 2. N(co) is almost surely equal to a constant (finite or 
infinite). 

Proof. N(co) does not change under translations of passage time 
realizations by lattice vectors and is therefore measurable with respect to 
the tail a-algebra generated by the variables t.,..,.. The zero-one law implies 
that it is almost surely constant. 

In view of Proposition 2 we will denote the almost surely constant 
value of N(o)) by N. The value of N is not known for any continuous distri- 
bution of passage times in any dimension. A well-known conjecture says 
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that in d = 2 ,  N = 0 .  For results supporting this conjecture see refs. 8 
and 12. The main result of this section, which we present next, is dimension- 
independent: 

T h e o r e m  1. Consider a first passage percolation model in any 
dimension d~> 2. Suppose that the mean passage time for a single bond is 
finite: 

E[tl,] < + ~  (4) 

Then the number of infinite geodesics N equals 0 or + ~ .  

Proof. Suppose that 0 < N < + ~ .  Let p denote the probability that 
a given bond belongs to one of the geodesics. It follows from symmetries 
of the model that this probability does not depend on the choice of the 
bond. It is also clear that p > 0, for otherwise with probability one no bond 
would belong to any geodesic (since there are countably many bonds) and 
consequently N would equal zero. Consider a cube A L of linear size L cen- 
tered at the origin of the lattice. Let Kc(co) denote the number of bonds in 
AL which belong to some geodesic. The multiparameter ergodic theorem 171 
implies that 

KL 
i-yS= p (51 

for almost every configuration of the passage times. Here and in the sequel 
IS[ denotes the number of elements of the set S. It follows that for any e > 0 
there is an Lo such that for L >~ L o we have 

[ ' 1  P K,_>>-~_IAcl >~l--e  (6) 

Now, each one of the Kz_ bonds belongs to (at least) one of the N 
geodesics, so 

K L >~P- [ALl (7) 
~'2 

implies that.one of the geodesics contains at least (p/2N) [ALl bonds which 
lie inside A L; this has to happen with probability at least 1 - e .  We will 
show that this leads to a contradiction. The idea of the proof is that if a 
path takes so many steps to connect two points on the boundary of A L 
(which is what each geodesic intersecting A/_ does), then with a probability 
close to one its passage time exceeds that of a path that connects these 
two points going along aAL (the boundary of A/_). It follows that the path 
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cannot be a geodesic, contradicting the assumption. To make this argument 
precise, let us denote the number of bonds on the boundary of At. by st.; 
thus st. is asymptotically equivalent to L d- I. Throughout the rest of the 
proof let 0 be a fixed number with O>E[tb]. By the weak law of large 
numbers t3) we have 

P[ ~" tb>OSL]-*O (8) 
b ~ O / I  L 

as L ~ oo. Next, note that, since for any integer C the number of nearest 
neighbor walks of length Cst. starting from 0 is bounded by (2d) c'z, we 
have 

P [ 3 ~ = ( 0 = ~ o ,  ~l ..... ~c~.L):t(~)<~Ost.]<-~(2d)C"LP ti<~Ost (9) 

where tj are independent variables with the distribution of the passage time 
variables t,.,y. An application of the Chebyshev inequality ~3~ yields, for any 
r>O, 

PLj~=, tj<.Ost. ~em"tE exp -,'~'j=, tj =[e"~ c'L (10) 

where, by definition, M is the moment-generating function of t j, i.e., 

M(2) ~r E[ea']  (11) 

Since tj are positive with probability one, we can choose r such that 

1 M(--r) =E[e ~'J] <~-~ (12) 

We now choose C so large that 

2de~~ < 1 (13) 

It follows from the estimate (10) that the probability on its left-hand side 
decays exponentially fast when L-+ oo. Hence also the probability that 
there exists a path ~, originating at a point of aAL with at least Cst- steps 
and with the passage time smaller than Ost decays (exponentially) as 
L--+ oo. Consequently, when L is large, with a probability close to one 
there are no points x and y on the boundary of At. such that the geodesic 
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y,.,, has more than CsL steps. But, we saw, as an immediate consequence 
of (7), that if 0 < N <  oo, then with a probability close to one there is a 
geodesic with at least ( p / 2 N ) I A L I  bonds inside AL. Denoting by x and y 
the points of the first and last intersections of this geodesic with aA/_, we 
obtain a pair of points on the boundary of A L such that the finite geodesic 
y.,...,, has at least ( p / 2 N )  lAd bonds. This leads to the desired contradiction, 
since for large L 

P [ALl > CsL (14) 
2N 

End of the proof. 

Remark 1. After completing the proof the author was made aware 
that related arguments had been used to study the number of infinite 
clusters in percolation modelsJ t~ ~ Similar methods are also used in ref. 8. 

2. GROUND STATES OF DISORDERED ISING MODEL 

In addition to its own interest, the question about the existence and 
number of infinite geodesics is important for understanding the ground 
states of disordered ferromagnets, as we now explain. 

The Ising model of a ferromagnet is a system of spins a.,. e { - 1, + 1 }, 
where x e Z a, with energy of a configuration ~ = { a_,. I x e Z 't} given for- 
mally by 

H ( ~ ) = - -  ~. J.~_.,,cr,.a 2, (15) 
I x - y l  = I 

While this sum itself is not well defined, it will be used below to define 
meaningful expressions. In the standard ferromagnetic Ising model the 
coupling constants J,.. :. are all equal to a positive constant J. In models of 
disordered ferromagnets (i.e., systems whose physics is significantly affected 
by presence of substitutions, defects, or impurities) the coupling constants 
are often taken to be random variables. See ref. 4 for a mathematical 
introduction to the theory of disordered systems. We will consider the case 
when J,..,. are independent nonnegative random variables with a common 
distribution. This model, called the random exchange Ising model (REIM), 
has been used to describe ferromagnetic crystals in which some ions have 
been replaced by ions of a different element, with very similar chemical, 
but very different magnetic properties. In two dimensions the first passage 
percolation problem discussed above is equivalent to the problem of the 
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number of ground states of the REIM. From now on we assume that the 
distribution of the coupling constants J.,. ,, is continuous. 

For any pair of spin configurations 6 and 6' such that ~r,. = a.',. for all 
except finitely many sites x e Z a, we define the expression H ( 6 ) -  H(6')  to 
be the sum of those terms in H(6) and - H ( 6 ' )  that do not cancel (there 
are only finitely many such terms). 

Def in i t ion  3. For a given realization of exchange coefficients J.,...,. 
a spin configuration 6 is a ground state of the energy function (15) if for 
any 6' equal to 6 except at finitely many sites we have 

H(6')--  H(6) i> 0 (16) 

It is clear that the two constant configurations are always the ground 
states. As for the number of infinite geodesics in the first passage model, a 
zero-one argument can be used to show that the number of the ground 
states is almost surely constant (an integer greater than or equal to two, or 
infinity). In the rest of this section we study the possible number of ground 
states. We begin by applying theorem of Section 1 to the two-dimensional 
case. 

2.1. T w o  D i m e n s i o n s  

Theorem 1 has the following interesting corollary: 

Theorem 2. In the two-dimensional REIM with continuous dis- 
tributed independent identically distributed exchange coefficients, the 
number of the ground states is 2 or + o~. 

P r o o f .  Let us introduce the lattice dual to Z '1, i.e., the translation of 
the original Z d lattice by the vector [ 1/2, 1/2]. Each bond of the dual lat- 
tice is bisecting a unique bond of the original lattice and vice versa, which 
introduces a one-to-one correspondence between the bonds of the two lat- 
tices. We now assign to a bond b of the dual lattice a passage time variable 
equal to the coupling constant J , .  ,. corresponding to the bond (x, y) of the 
original lattice which bisects b. This defines a first passage percolation 
model on the dual lattice. Given a nonconstant ground state (if such 
ground states exist), consider the bonds of the dual lattice separating + 1 
spins from the - 1 ones. It is easy to see that we obtain in this way a union 
of doubly infinite paths. The definition of a ground state implies 
immediately that any path separating + 1 spins from - 1  spins in a non- 
constant ground state of REIM is an infinite geodesic in the first passage 
model defined above. Conversely, given an infinite geodesic, we can 
produce a ground state by defining spins on one side of the geodesic to be 
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+ 1 and those on the other side to be - 1  (there are, of course, two ways 
to do this; the resulting spin configuration differ by the global sign change). 
Theorem 2 follows now immediately from Theorem 1. 

2.2. Dimensions Higher than T w o  and Min imal  Hypersurfaces 

The construction of a dual first-passage percolation model in the pre- 
vious subsection can be generalized to higher dimensions. Consider a 
REIM on a lattice Z a in d >  2 dimensions. In dimensions higher than two 
the objects dual to bonds of Z d are ( d -  1)-dimensional cells (hypercubes) 
which bisect the bonds of Z d. Given a spin configuration on Z d, we will 
study the hypersurfaces formed by the cells dual to bonds connecting spins 
with opposite values. With the cell c dual to a bond (x, y) we associate the 
random variable J,.=dr value of the coupling constant of the 
corresponding bond. We can think of the resulting model as of a higher 
dimensional version of first passage percolation, assigning to any finite 
collection of cells a weight equal to the sum of the weights of its constituent 
cells. See ref. 6 for results exploring the analogy with first passage percola- 
tion. In the present paper we study the analog of infinite geodesics--mini- 
mal surfaces--and its application to disordered Ising models. The strategy 
used in this subsection parallels our approach to the two-dimensional case: 
we establish a relation between ground states in REIM and minimal hyper- 
surfaces, prove a result about the possible number of minimal hypersur- 
faces, and, as a corollary, obtain a result about the possible number of 
ground states. 

Def in i t ion.  The dual of a spin configuration is the union of all cells 
dual to bonds which connect spins with opposite signs. 

It is easy to see that the dual of a spin configuration is a topological 
manifold without boundary (connected or not). Any orientable, connected 
topological (d-1)-dimensional  manifold without boundary which is a 
union of cells dual to the bonds of Z d can be obtained as a dual of exactly 
two spin configurations which differ by the global spin flip. 

Def in i t ion .  Two collections of dual cells are called local modifica- 
tions of each other if their symmetric difference consists of finitely many 
cells. Given'a configuration of coupling constants J.,..y (and hence also the 
corresponding configuration of weights J,. assigned to the dual cells), for 
any Z and its local modification ~r, the expression 

Z J , . - ~  J,. (17) 
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is well-defined, since the terms of the two sums cancel except for finitely 
many. 

D e f i n i t i o n .  For  a fixed configuration of random variables J,...,, an 
orientable, connected topological ( d -  1)-dimensional manifold s which is 
a union of cells dual to bonds of Z a is called a minimal hypersurface if it 
has no local modification Z'  which is also an open, connected topological 
manifold, such that 

J,.- ~ J,.<O (18) 
c ~ - '  cE2.- 

As in Proposition 1, it is easy to show that the number of minimal 
hypersurfaces is almost surely a constant. 

Theorem 3. Assume that the random couplings of an REIM are 
continuously distributed with a finite mean: 

E[J.,..j,] < ov (19) 

Then in the associated hypersurface model the number of minimal hyper- 
surfaces is 0 or + or. 

The proof of this theorem is very similar to the proof of Theorem 1, 
so we will only sketch it. The idea 'is again that if the number N of minimal 
hypersurfaces is finite and positive, then in a large cube AL centered at the 
origin, with probability close to one a positive fraction of cells will belong 
to one of them, which we will denote by Z. We now construct a local 
modification of Z, preserving the infinite components of Z\AL and replac- 
ing the union of the finite components o f , ~ ' \ A  L and Z w  A L by a subset of 
the boundary of AL. This can be done so as to obtain another topological 
manifold without a boundary, which is a union of cells dual to bonds of the 
original lattice. A simple way to do this is to consider one of the spin con- 
figurations associated to the hypersurface Z and its local change obtained 
by putting all spins inside AI_ to 1. The dual of this new configuration is 
a local modification of Z" with the desired properties. We now use 
probabilistic estimates analogous to those of Theorem 1 to show that with 
probability greater than zero (in fact, close to one), 

Jc- Z Jc<0 (20) 
c (~)..-' c ~ Z  

which is a contradiction. 
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T h e o r e m  4. Suppose that in a REIM the coupling variables are 
continuously distributed with a finite mean. Then the number of  ground 
states is 2 or + oo. 

Again, the proof is similar to the proof of Theorem 1. It suffices to 
observe that any minimal hypersurface generates a ground state and that 
components of the dual configuration corresponding to a ground state are 
minimal hypersurfaces. 
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